

 Integrated security for an IP-connected world

Web-based API for the S2 NetBox™

 API Version 3.1d

S2 Security Corporation

50 Speen St.

Suite 300

Framingham, MA 01701

www.s2sys.com

S2 Support: 508 663-2505

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

1

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

2

Table of Contents

Overview .. 3
Database Architecture ... 3

Calling the API.. 4
Retrieving the version of the API.. 6

API Commands and Parameters .. 6
Access Levels in EditPerson...27
Date Formats..28
Using the ENCODEDNUM, HOTSTAMP, CARDID and CARDNUM
Parameters in AddCredential ..28
The CARDNUM Parameter and Card Format in AddCredential29
Response to GetPerson..30
Calling SearchPersonData..30
Response to SearchPersonData...31
Response to GetAccessLevels ...32
Response to the GetCardAccessDetails and GetAccessCardDetails
Command ...33
Response to the GetAccessDataLog Command...34
Type Code and Reason Code tables ..35
Calling EditThreatLevelGroup ...36
Calling GetPortals ...37
Response to the GetPortals ..37
Calls and Responses to GetAccessHistory ...38
Notes on TimeSpecs and TimeSpecGroups ...40
Calling GetTimeSpec ..41
Response to GetTimeSpec ...41
Calling GetTimeSpecs ..42
Response to GetTimeSpecs ...42
Calling GetTimeSpecGroup ..42
Response to GetTimeSpecGroup ...43
Calling GetTimeSpecGroups ..43
Response to GetTimeSpecGroups ...43
Errors in API Processing...44

Message Authentication Code.. 44
Generating the MAC ...44

Examples.. 45

Overview
The S2 NetBox is an integrated security management network appliance that supports access
control, alarm monitoring, video surveillance, temperature monitoring, intercom, and administrative
functions. Individual S2 NetBox units are typically deployed to manage security for single facilities,
and may be networked for the purpose of building larger security networks.

Internally, the S2 NetBox deploys the familiar three-tier architecture in which the database tier uses
PostgreSQL, the web server is based on GoAhead’s embedded web server, and the business logic
is provided by S2 Security Corporation. All components managed by the S2 NetBox are network-
connected, and are managed through a web-based user interface.

This document describes the API for the S2 NetBox that permits network-connected systems to
perform various operations with the S2 NetBox under program control.

Database Architecture
The database server embedded in the S2 Network Controller (S2NC) is PostgreSQL, specifically
licensed for this application. While the DBMS supports ODBC, to avoid conflict with possible future
schema changes all database interaction should be accomplished through the API.

With regard to the access control subsystem, a fragment of the database schema is shown below.
The database includes a table of “people”, whose records act as container objects for attributes
attached to people in real life. People are mapped to access levels which specify access privilege
and to access cards, the credentials used for access control.

It is assumed that the access levels will be input into the system using the normal web user interface
for the S2 NetBox, and that people and cards may be entered either through the web user interface
or through the API. Likewise, card formats are entered through the standard web user interface.
Note that because records of the Person table are basically container objects, a Person record must
exist before an AccessCard or PersonToAccessLevel record is associated with it. The API provides
a mechanism for accomplishing this by splitting the entry of the Person record from the credentials
associated with that person. This is a two-step operation in the API, while the user interface
encapsulates it as a single operation.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

3

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

4

Calling the API
The API for the S2 NetBox is invoked by POSTing an HTTP message to the web server on the S2
Network Controller (S2NC). The message includes a single form parameter whose name is
“APIcommand,” and whose value is a blob of XML that contains the API command(s) described
below.

API commands are accepted at address:

http://<netbox address>/goforms/nbapi

The IP port for these commands is the port at which the NetBox web server responds and is set with
the SETUP > SITE SETTINGS > NETWORK CONTROLLER command. It defaults to port 80. By
way of example, commands for a network controller located at 192.168.0.220 port 8080 go to
http://192.168.0.220:8080/goforms/nbapi.

The XML API command passed to the S2 NetBox is wrapped in <NETBOX-API> tags. Within
those tags are one or more1 <COMMAND> blocks that contain individual API commands and a single
<MAC> entry containing the computed message authentication code for the entire contents of the
XML blob. Return information is passed back to the calling program from the web server, also in
XML format.

The <COMMAND> block includes a command name attribute (name=) defined in the table below, a
command number attribute2 (num=) which serves to connect a given command with its response,
and a block of parameters enclosed within <PARAMS> tags. Parameters are uniquely named, also
as defined in the table below. Multiple <COMMAND> blocks can be included in a single blob of XML.

Each message sent by the caller contains a sequence number that is part of the message
authentication code in the <MAC> tag. It is up to the caller to increment the sequence numbers; the
S2 NetBox remembers the highest sequence number that is has seen, and will reject messages that
have sequence numbers less than or equal to that number.3

XML tags that are not supported by the API but are syntactically valid XML are ignored. The
structure of the XML blob is as follows:

<NETBOX-API>
 <COMMAND name=command-name1 num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <PARAM1> … value 1 … </PARAM1>
 <PARAM2> … value 2 … </PARAM2>
 .
 .
 .
 </PARAMS>
 </COMMAND>
 <COMMAND name=command-name2 num=”2”>

1 The maximum number of <COMMAND> blocks that can be sent to the API is 32.
2 The num= attribute is a number in the range from 1 to 32 (depending upon how many commands are
provided. There can be no gaps in the numbering, so, for example, if there are two commands, they must
be num=1 and num=2.
3 The system administrator has the option of turning off message authentication from the S2 NetBox user
interface if there are other methods of data security in place. It is up to the caller to remember the highest
sequence number transacted, and to always transact sequence numbers higher than the last one. If that
becomes impossible, an option in the S2 NetBox user interface can be used to reset the sequence
numbering.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

5

 <PARAMS>
 <PARAM1> … value 1 … </PARAM1>
 <PARAM2> … value 2 … </PARAM2>
 .
 .
 .
 </PARAMS>
 </COMMAND>
 .
 .
 .
 <MAC> …authentication code as hex digits … </MAC>
</NETBOX-API>

The “dateformat” attribute on a command is optional. If it is supplied, dates are returned with an
additional timezone offset included (see below for date format).

In response4 to the API call, a blob of XML5 is returned as follows, with each command generating a
<RESPONSE> block that includes a “name=” attribute indicating the type of command to which it
applies and a “num=” attribute indicating the instance, as follows:

<NETBOX>
 <RESPONSE command=command-name1 num=”1”>
 <CODE> …response code text… </CODE>
 <DETAILS> …response details… </DETAILS>
 </RESPONSE>
 <RESPONSE command=command-name2 num=”2”>
 <CODE> …response code text… </CODE>
 <DETAILS> …response details… </DETAILS>
 </RESPONSE>
 .
 .
 .
</NETBOX>

4 No <MAC> is required for message responses because they are associated only with specific API
requests.
5 The maximum size of a response block is 8192 (8K) bytes.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

6

Retrieving the version of the API
For versions 2.1 and newer, an XML command <GetAPIVersion> exists that will return
<APIVERSION> with the appropriate version string. Versions of the API older than 2.1 do not
recognize this command.

Therefore a request such as:

<NETBOX-API>
 <COMMAND name=’GetAPIVersion’ num=”1”>
 </COMMAND>
</NETBOX-API>

Will return (in the case of this version):

<NETBOX-API>
 <RESPONSE command=’GetAPIVersion’ num=”1”>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <APIVERSION>2.2</APIVERSION>
 </DETAILS>
 </RESPONSE>
</NETBOX-API>

API Commands and Parameters
The API supports these commands:

• AddPerson – allows you to add a new Person to the system. This will return an error if the
Person already exists (identified by a passed in PERSONID). If no PERSONID is supplied, one is
created for the Person.

• ModifyPerson – allows you to modify an existing Person. PERSONID is required, and the call
will fail if it does not match on an existing Person.

This may be used to DELETE or UNDELETE a Person, as in the API.

• EditPerson – adds or modifies a person record to the database. The use of this is deprecated in
2.5 – AddPerson and ModifyPerson are preferred. This command associates a name and access
level(s) with a person ID6. In order to associate a credential with the person, subsequent
commands are issued to add credentials.

The EditPerson command operates as follows:

1. If a PERSONID is not supplied, then the data is entered into the Person table and the
PERSONID of the new Person is returned to the caller or zero is returned if the add fails. In
this case, the PERSONID will be assigned by the system and will be of the form “_nnnnnnn”
(underscore followed by a sequence of digits).

2. If a PERSONID is supplied by the caller and a Person with that ID does not exist in the
database then the Person record is created and the PERSONID is returned to the caller or
zero is returned if the add fails.

6 A PERSONID is a text field supplied by the caller that is displayed in the “ID” field of the person record
in the user interface. Typically this field holds an identifier of significance to the calling application’s
database such as an employee number.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

7

3. If a PERSONID is supplied by the caller and a Person already exists in the database with
that ID, then the record in the database is replaced by the data supplied by the caller and the
PERSONID is returned or zero is returned if the operation failed.

EditPerson may also be used to Delete or “Undelete” a Person, as in the UI.

• RemovePerson – removes a person7 and all associated credentials from the database.

• GetPerson – returns data about a Person.

• SearchPersonData – retrieves information about 1 or more people, based on various search
criteria.

• AddCredential – adds a credential to a person already in the database.

• RemoveCredential – removes a credential from a person already in the database.

• GetCardFormats - retrieves a list of the names of the defined card formats.

• AddAccessLevel – add a new access level.

• ModifyAccessLevel – modify an existing access level.

• DeleteAccessLevel – delete an access level.

• GetAccessLevel – retrieve information about an access level.

• GetAccessLevels – returns a list of names of the valid access levels in the system.

• PingApp – heartbeat for the application. Used only for the caller to determine the health of the
S2 NetBox.

• GetAPIVersion (2.1 and newer) – retrieves the current version of the NBAPI from the server.

• GetAccessDataLog – retrieve a data log from the history. The use of this is deprecated. Use
GetAccessHistory instead.

The GetAccessDataLog command operates as follows:

1. The caller issues the GetAccessDataLog command passing the LOGID of the last data log
retrieved from the API.

2. If the caller does not know the LOGID of the last data log, then the caller passes zero to the
GetAccessDataLog command and the command returns the last data log in the system with
its LOGID.

3. The caller adds one (1) to the LOGID of the last log received, and requests the data log with
that LOGID. If no such data log exists (that is, if the LOGID passed was for the last log in
the system), then the API will return a LOGID of zero.

• GetAccessCardDetails – returns recent card access events and related information given a
CARDID and CARDFORMAT. The use of this is deprecated. Use GetCardAccessDetails instead.

• GetCardAccessDetails – returns recent card access events and related information given a
CARDID and CARDFORMAT.

• AddThreatLevel – add in a new Threat Level.

• ModifyThreatLevel – modify an existing Threat Level.

• EditThreatLevel – add a new or edit an existing Threat Level The use of this is deprecated in 2.5
– AddThreatLevel and ModifyThreatLevel are preferred.

7 RemovePerson actually disables the person record, leaving it in the database so that reports of history
continue to function. Access levels and credential records are actually deleted, however.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

8

• RemoveThreatLevel – delete a Threat Level.

• SetThreatLevel – change the Threat Level in the system.

• AddThreatLevelGroup – add a new Threat Level Group.

• ModifyThreatLevelGroup – modify threat level members in an existing threat level group.

• EditThreatLevelGroup – add a new or modify an existing Threat Levevl Group. The use of this is
deprecated in 2.5 – AddThreatLevelGroup and ModifyThreatLevelGroup are preferred.

• RemoveThreatLevelGroup – remove a threat level group.

• GetPortals – returns list of portals and associated card readers defined for the NetBox.

• GetAccessHistory – returns a history of access activity, either for all users or for a particular
access card (as a supplement to GetAccessDataLog, GetCardAccessDetails, and
GetAccessCardDetails. (GetAccessCardDetails is now deprecated: use GetCardAccessDetails
instead.).

• GetTimeSpec – returns a single time spec that is in the system.

• GetTimeSpecs – returns a list of time specs that are in the system.

• AddTimeSpec – add a new time spec into the system.

• ModifyTimeSpec – modify a time spec already in the system.

• DeleteTimeSpec – delete a time spec in the system.

• GetTimeSpecGroup – returns a single time spec group that is in the system.

• GetTimeSpecGroups – returns a list of time spec groups that are in the system.

• AddTimeSpecGroup – add a new time spec group into the system.

• ModifyTimeSpecGroup – modify a time spec group already in the system.

• DeleteTimeSpecGroup – Delete a time spec group from the system.

• AddHoliday – add a new holiday into the system.

• ModifyHoliday – modify an existing holiday.

• DeleteHoliday – delete an existing holiday.

• GetHolidays – return a list of holiday keys.

• GetHoliday – return a specific holiday.

• AddReaderGroup – add a new reader group to the system.

• ModifyReaderGroup – modify an existing reader group.

• DeleteReaderGroup – delete an existing reader group.

• GetReaderGroups – return a list of reader group keys.

• GetReaderGroup – return information for a specific reader group.

• GetReaders – return a list of readers in the system.

• GetReader – return information about a single reader.

• AddPortalGroup – add a new portal group.

• ModifyPortalGroup – modify an existing portal group.

• DeletePortalGroup - remove a portal group.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

9

• GetPortalGroups – retrieve a list of Portal Groups.

• GetPortalGroup – retrieve information about a single portal group.

The table below details the available commands and their parameters.

Command Name Parameter Call /
Return Usage

LASTNAME C

Text last name of
person being added;
this is a required
field.

FIRSTNAME C Text first name of
person being added

MIDDLENAME C Middle name of
person

NOTES C Notes field of person
record

EXPDATE C Expiration date for
person record

ACTDATE C Activation date for
person record

UDF1...UDF20 C User-defined fields
(20)

ACCESSLEVELS

C

Block containing one
or more access
levels (maximum of
32) to be associated
with the Person.
See below for
details.

AddPerson

PICTURE C
Optional: Picture
data for the person
being added.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

10

PICTUREEXT C

Extension that
describes the format
of the picture data,
eg, “jpg”. Required if
PICTURE supplied:
see above.: see
previous parameter.

PERSONID C/R

“SUCCESS”, or
“DUPLICATE” is
returned as an
ERROR if
PERSONID
matches an existing
Person, and the
Person record is not
updated.

If no PERSONID is
supplied, one is
created for the
PERSON, and is
returned in the
result.

ERRMSG R

If the call returns an
error as indicated by
<CODE>, then
<ERRMSG> contains
a text description of
the error condition.
See Examples at the
end of this
document.

LASTNAME C

Text last name of
person being added;
this is a required
field.

FIRSTNAME C Text first name of
person being added

MIDDLENAME C Middle name of
person

NOTES C Notes field of person
record

EXPDATE C Expiration date for
person record

ACTDATE C Activation date for
person record

ModifyPerson

UDF1...UDF20 C User-defined fields
(20)

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

11

ACCESSLEVELS C

Block containing one
or more access
levels (maximum of
32) to be associated
with the Person.
See below for
details.

PICTURE C
Optional: Picture
data for the person
being modified.

PICTUREEXT C

Extension that
describes the format
of the picture data,
eg “jpg”. Required if
PICTURE supplied:
see previous
parameter.

DELETED C

“TRUE” or “FALSE.”
Supplying “TRUE” is
the same as a call to
“RemovePerson.”
Supplying “FALSE”
to a person who has
been deleted
undeletes the
Person.

PERSONID C

“SUCCESS”, or
“FAIL” if PERSONID
does not match an
existing Person.

ERRMSG R

If the call returns an
error as indicated by
<CODE>, then
<ERRMSG> contains
a text description of
the error condition.
See Examples at the
end of this
document.

LASTNAME C

Text last name of
person being added;
this is a required
field.

FIRSTNAME C Text first name of
person being added

MIDDLENAME C Middle name of
person

NOTES C Notes field of person
record

EditPerson
(deprecated)

EXPDATE C Expiration date for
person record

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

12

ACTDATE C Activation date for
person record

UDF1...UDF20 C User-defined fields
(20)

ACCESSLEVELS C

Block containing one
or more access
levels (maximum of
32) to be associated
with the Person.
See below for
details.

PICTURE C

Optional: Picture
data for the person
being added or
modified.

PICTUREEXT C

Extension that
describes the format
of the picture data,
eg “jpg”. Required if
PICTURE supplied:
see previous
parameter.

DELETED C

“TRUE” or “FALSE.”
Supplying “TRUE” is
the same as a call to
“RemovePerson.”
Supplying “FALSE”
to a person who has
been deleted
undeletes the
Person.

PERSONID C/R

“SUCCESS”, “FAIL”,
or “DUPLICATE” as
appropriate in
<CODE> and the ID
used by the S2
NetBox to identify
the person added in
<DETAILS>8. This
parameter may be
supplied by the
caller or, if not
supplied, will be
assigned by the
NetBox. In all
cases, it is returned
or zero if the
operation fails.

ERRMSG R If the call returns an
error as indicated by

8 In this command, DUPLICATE is a successful return indicating that the record was updated rather than
inserted. A return of SUCCESS indicates an inserted record. (No reference in text to this footnote –
actually, it’s there under <DETAILS> above.)

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved ration Confidential

13

 S2 Security Corpo

<CODE>, then
<ERRMSG> contains
a text description of
the error condition.
See Examples at the
end of this
document.

PERSONID C

ID of person to be
removed (along with
all of his cards) from
the S2 NetBox

RemovePerson

result R

“SUCCESS” or
“FAIL” as
appropriate returned
in <CODE>.

PERSONID C

PERSONID for the
Person whose
record the caller
wishes to have
returned.

GetPerson

Result R

“SUCCESS” or
“FAIL” returned as
<CODE>. If
successful, then
<DETAILS>
contains a block of
XML describing the
Person (see below).

PERSONID C

If supplied, the
single person
matching the person
id will be returned

LASTNAME C

If these or any other
of the criteria are
used, the set of
people matching the
restrictions will be
returned

FIRSTNAME C

MIDDLENAME C

UDF1...UDF20 C User Defined Fields

PICTUREURL R

SearchPersonData

DELETED C “TRUE”, “FALSE” or
“ALL.” If “ALL” is
supplied, both
DELETED and
UNDELETED
people are returned.
If “TRUE” is
supplied, only
DELETED people
are returned, if

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

14

“FALSE” is supplied,
only NOT DELETED
People are returned.

Defaults to “FALSE”
(i.e. only returns not
deleted people).

STARTFROMKEY C

Used in conjunction
with NEXTKEY to
retrieve the next set
of matching people

NEXTKEY R

This is returned with
a value of “-1” if
there are no more
people to return, or
a specific value > 0
that can be used in
the next call as the
“STARTFROMKEY”
value.

PERSONID C
ID of person for
whom the credential
is to be added

ENCODEDNUM9 C

Optional: card
number that will be
placed in the
“number” field of the
card.

This is now
preferred to
CARDNUM, as it will
generate the
corresponding raw
hexadecimal digits.

If HOTSTAMP or
CARDID are not
supplied, this is also
used as the Hot
stamp #.

HOTSTAMP C

Optional: “friendly”
card number that is
sometimes different
from the one used in
the underlying card
format.

If ENCODEDNUM is
not supplied, this is
used as the
Encoded # as well.

AddCredential

CARDNUM C Optional: Encoded

9 The value for ENCODEDNUM must be an integer that fits within the number of bits specified in the
CARDFORMAT for that credential.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

15

card number passed
as a text string of
hexadecimal digits.
This number
represents the raw
card data that will be
inserted into the
record without the
benefit of any
additional
formatting.

The use of this is
now deprecated.
The functionality
here can be more
easily accomplished
with the
ENCODEDNUM
field.

CARDID C

Optional: -- same
meaning as
HOTSTAMP. Its use
is now deprecated.

CARDFORMAT C
Text name of the
format to be used to
decode the card

result R

“SUCCESS”,
“FAIL”, or
“DUPLICATE” as
appropriate, with the
latter meaning that
the card already
exists, is returned in
<CODE>.

PERSONID C

ID of the person
from whom the
credential is to be
removed

ENCODEDNUM/

HOTSTAMP/
CARDNUM/
CARDID

C

One of these will be
used to identify the
card, together with
the CARDFORMAT.

See the distinction
between these fields
in AddCredential.

RemoveCredential

CARDFORMAT C

Name of the card
format to be used in
interpreting the
CARDID. This is the
CARDFORMAT
used in entering the
credential through
the user interface of
via AddCredential.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

16

Result R

“SUCCESS”, “FAIL”,
or “NOT FOUND” as
appropriate is
returned in <CODE>.

GetCardFormats10 Result R

“SUCCESS” or
“FAIL” returned in
<CODE> and a list of
card format names
returned in
<DETAILS> if
successful (see
below).

ACCESSLEVELNAME C Name for access
level

ACCESSLEVELDESCRIPTION C Description

READERGROUPKEY C

Optional, reference
to ReaderGroup for
this access level.
Either this or
READERKEY must
be supplied

READERKEY C
Optional. Reference
to Reader for this
access level.

TIMESPECGROUPKEY C
Time Spec Group
reference for this
Access Level.

THREATLEVELGROUPKEY C
Threat level group
reference for this
Access Level

AddAccessLevel

ACCESSLEVELKEY R
If success, the
reference for this
access level

ACCESSLEVELKEY C

ACCESSLEVELNAME C Name for access
level

ACCESSLEVELDESCRIPTION C Description

READERGROUPKEY C

Optional, reference
to ReaderGroup for
this access level.
Either this or
READERKEY must
be supplied

READERKEY C
Optional. Reference
to Reader for this
access level.

ModifyAccessLevel

TIMESPECGROUPKEY C Time Spec Group

10 GetCardFormats has no parameters.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

17

reference for this
Access Level.

THREATLEVELGROUPKEY C
Threat level group
reference for this
Access Level

DeleteAccessLevel ACCESSLEVELKEY C

ACCESSLEVELKEY C

ACCESSLEVELNAME R Name for access
level

ACCESSLEVELDESCRIPTION R Description

READERGROUPKEY R

Optional, reference
to ReaderGroup for
this access level.
Either this or
READERKEY must
be supplied

READERKEY R
Optional. Reference
to Reader for this
access level.

TIMESPECGROUPKEY R
Time Spec Group
reference for this
Access Level.

GetAccessLevel

THREATLEVELGROUPKEY R
Threat level group
reference for this
Access Level

WANTKEY C

if “TRUE” supplied,
numeric key is
returned; if “FALSE”
or no parameter, key
name is returned.

STARTFROMKEY C

Optional: when
WANTKEY is TRUE,
used in conjunction
with NEXTKEY to
retrieve the next set
of Access Level
Keys.

GetAccessLevels

STARTFROMNAME C

Optional: when
WANTKEY is
FALSE (or not
specified), used in
conjunction with
NEXTNAME to
retrieve the next set
of Access Level
Names.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

18

result R

“SUCCESS” or
“FAIL” returned as
<CODE> and a list of
access levels
returned in
<DETAILS> if
successful (see
below).

GetAPIVersion11 APIVERSION R

Returns a string
“2.1” indicating the
major and minor
version of the API
that is currently
supported by the
NBAPI

LOGID C

ID number of the
last log retrieved or
zero to return the
last data log in the
system.
“SUCCESS”, “FAIL”,
or “NOT FOUND”
returned in <CODE>.

GetAccessDataLog

Result R

See description
below for details of
returned data from
the Get data log
command.

11 GetAPIVersion has no parameters, returns a version string, and is not supported before version 2.1 on
the server.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

19

ENCODEDNUM/

HOTSTAMP/
CARDNUM/
CARDID

C

One of these will be
used to identify the
card, together with
the CARDFORMAT.

See the distinction
between these fields
in AddCredential.

CARDFORMAT C

Name of the card
format to be used in
interpreting the
CARDID. This is the
CARDFORMAT
used in entering the
credential through
the user interface of
via AddCredential.

MAXRECORDS C

Optional: Maximum
number of access
history data logs to
return. If omitted,
the API will return
the smaller of the
number of records
that match the
request and the
number of records
that fill its 16K return
buffer.

OLDESTDTTM C

Optional: do not
retrieve any
accesses older than
this time.

GetCardAccessDetails

and

GetAccessCardDetails

(GetAccessCardDetails is
now deprecated: use
GetCardAccessDetails
instead.)

Result R See notes below.

LEVELNAME C Name of threat level
to add.

SEQNUM C

Optional: Display
order for the threat
level in NetBox user
interface displays.

COLOR C

Optional: One of
White, Green,
Blue, Yellow,
Orange, or Red as
desired.

AddThreatLevel

Return R
“SUCCESS” or
“FAIL” returned as
<CODE>.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

20

LEVELNAME C Name of threat level
to edit.

SEQNUM C

Optional: Display
order for the threat
level in NetBox user
interface displays.

COLOR C

Optional: One of
White, Green,
Blue, Yellow,
Orange, or Red as
desired.

ModifyThreatLevel

Return R
“SUCCESS” or
“FAIL” returned as
<CODE>.

LEVELNAME C

Name of threat level
to edit (if it exists) or
add (if it does not
exist). Note: to
rename a threat
level, use
RemoveThreatLevel
followed by
EditThreatLevel.

SEQNUM C

Optional: Display
order for the threat
level in NetBox user
interface displays.

COLOR C

Optional: One of
White, Green,
Blue, Yellow,
Orange, or Red as
desired.

EditThreatLevel
(deprecated)

Return R
“SUCCESS” or
“FAIL” returned as
<CODE>.

LEVELNAME C Name of the threat
level to remove.

RemoveThreatLevel

Return R “SUCCESS” or
“FAIL” returned as

LEVELNAME C
Name of the threat
level into which the
system will be set.

SetThreatLevel

Return R
“SUCCESS” or
“FAIL” is returned in
<CODE>.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

21

LEVELGROUPNAME C Name of the threat
level group to add.

LEVELNAMES C

Optional: Names of
the threat levels to
be added to this
threat level group.
See below for an
example of the call.

AddThreatLevelGroup

Return R
“SUCCESS” or
“FAIL” is returned in
<CODE>.

LEVELGROUPNAME C

Name of the threat
level group to edit.
Note that all
members of the
threat level group
are replaced with
each call to this
function.

LEVELNAMES C

Optional: Names of
the threat levels to
be added to this
threat level group.
See below for an
example of the call.

ModifyThreatLevelGroup

Return R
“SUCCESS” or
“FAIL” is returned in
<CODE>.

LEVELGROUPNAME C

Name of the threat
level group to edit or
insert. Note that all
members of the
threat level group
are replaced with
each call to this
function.

LEVELNAMES C

Optional: Names of
the threat levels to
be added to this
threat level group.
See below for an
example of the call.

EditThreatLevelGroup
(deprecated)

Return R
“SUCCESS” or
“FAIL” is returned in
<CODE>.

LEVELGROUPNAME C

Name of the threat
level group to
remove from the
system. RemoveThreatLevelGroup

Return R
“SUCCESS” or
“FAIL” is returned in
<CODE>.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

22

STARTFROMKEY C

Used in conjunction
with NEXTKEY to
retrieve the next set
of portals

GetPortals

NEXTKEY R

This is returned with
a value of “-1” if
there are no more
people to return, or
a specific value > 0
that can be used in
the next call as the
“STARTFROMKEY”
value.

STARTLOGID C

Optional: use to start
with a particular log
ID. Generally used
in conjunction with
<NEXTLOGID>
returned from a prior
call

AFTERLOGID C

Optional: used to
start after a
particular log ID that
was previously
returned. Implies an
order of
“ASCENDING”

ORDER C

Optional: can be
DESCENDING or
ASCENDING.
Defaults to
DESCENDING
(unless
AFTERLOGID is
supplied)

MAXRECORDS C

Optional: maximum
of
ACCESSENTRY’s
returned in one call.
If not supplied, the
maximum returned
in one call is limited
to an internal buffer
size.

ENCODEDNUM/

HOTSTAMP/
CARDNUM/
CARDID

C

Optional: one of
these will be used to
identify a particular
card, together with
the CARDFORMAT.

See the distinction
between these fields
in AddCredential.

GetAccessHistory

CARDFORMAT C Optional: name of
the card format to be

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

23

used in interpreting
the card identifier
information. This is
the CARDFORMAT
used in entering the
credential through
the user interface of
via AddCredential.

OLDESTDTTM C

Optional: do not
retrieve any
accesses older than
this time.

Return R
“SUCCESS” OR
“NOT FOUND”
returned in <CODE>

GetTimeSpec TIMESPECKEY C
 Key for TimeSpec

STARTFROMKEY C
Used in conjunction
with NEXTKEY to
retrieve the next set
of time specs

GetTimeSpecs

NEXTKEY R

This is returned with
a value of “-1” if
there are no more
timespecs to return,
or a specific value >
0 that can be used
in the next call as
the
“STARTFROMKEY”
value.

NAME C Name for timespec

DESCRIPTION C Description

STARTTIME C Start Time in
HH:MM format

ENDTIME C End Time in HH:MM
format

MONDAY C 1 / 0

TUESDAY C 1 / 0

WEDNESDAY C 1 / 0

THURSDAY C 1 / 0

FRIDAY C 1 / 0

SATURDAY C 1 / 0

SUNDAY C 1 / 0

AddTimeSpec

HOLIDAYGROUPS C
Any of the numbers
“1,2,3”, separated by
commas (e.g. “1,2”

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

24

TIMESPECKEY R Key of newly
created timespec

return R
“SUCCESS” or
“FAIL” returned as
<CODE>.

TIMESPECKEY C Key for time spec to
modify

NAME C Name for timespec

DESCRIPTION C Description

STARTTIME C Start Time in
HH:MM format

ENDTIME C End Time in HH:MM
format

MONDAY C 1 / 0

TUESDAY C 1 /. 0

WEDNESDAY C 1 / 0

THURSDAY C 1 / 0

FRIDAY C 1 / 0

SATURDAY C 1 / 0

SUNDAY C 1 / 0

ModifyTimeSpec

HOLIDAYGROUPS C
Any of the numbers
“1,2,3”, separated by
commas (e.g. “1,2”

DeleteTimeSpec TIMESPECKEY C

GetTimeSpecGroup TIMESPECGROUPKEY C

Key for
TimeSpecGroup

STARTFROMKEY C

Used in conjunction
with NEXTKEY to
retrieve the next set
of time spec groups

GetTimeSpecGroups

NEXTKEY R

This is returned with
a value of “-1” if
there are no more
timespecs to return,
or a specific value >
0 that can be used
in the next call as
the
“STARTFROMKEY”
value.

NAME C Name for timespec
group

AddTimeSpecGroup

DESCRIPTION C Description

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

25

TIMESPECKEYS C

List of keys for
timespecs to be
included in the
group

TIMESPECGROUPKEY R
Key of newly
created timespec
group

TIMESPECGROUPKEY C Key for time spec
group to modify

NAME C Name for timespec

DESCRIPTION C Description ModifyTimeSpecGroup

TIMESPECKEYS C

List of keys for
timespecs to be
included in the
group

DeleteTimeSpec TIMESPECKEY C

HOLIDAYNAME C

HOLIDAYGROUPS C Any of 1,2, or 3

STARTDATE C

ENDDATE C

AddHoliday

HOLIDAYKEY R Key of holiday newly
created holiday

HOLIDAYKEY C

HOLIDAYNAME C

HOLIDAYGROUPS C Any of 1,2, or 3

STARTDATE C

ModifyHoliday

ENDDATE C

DeleteHoliday HOLIDAYKEY C

HOLIDAYKEY C

HOLIDAYNAME R

HOLIDAYGROUPS R

STARTDATE R

GetHoliday

ENDDATE R

GetHolidays HOLIDAYS R List of
HOLIDAYKEYs

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

26

NAME C Name for reader
group

DESCRIPTION C Description

READERKEYS C

List of keys for
readers to be
included in the
group

AddReaderGroup

READERGROUPKEY R Returned identity for
new reader group

READERGROUPKEY C Identifier for the
reader group

NAME C

DESCRIPTION C

ModifyReaderGroup

READERKEYS C

DeleteReaderGroup READERGROUPKEY C

GetReaderGroups READERGROUPKEYS R Returns a list of
reader groups

READERGROUPKEY C

NAME R

DESCRIPTION R
GetReaderGroup

READERKEYS R List of reader keys

GetReaders R List of reader keys in
the system

READERKEY C

NAME R GetReader

DESCRIPTION R

NAME C Name for portal
group

DESCRIPTION C Description

UNLOCKTIMESPECGROUPKE
Y C

Timespec group key
for unlocking portals
in this group

THREATLEVELGROUPKEY C Reference to threat
level group

PORTALKEYS C

List of keys for
portals to be
included in the
group

AddPortalGroup

PORTALGROUPKEY R Returned identity for
new portal group

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

27

PORTALGROUPKEY C Identifier for the
reader group

NAME C

DESCRIPTION C

PORTALKEYS C

UNLOCKTIMESPECGROUPKE
Y C

Timespec group key
for unlocking portals
in this group

ModifyPortalGroup

THREATLEVELGROUPKEY C Reference to threat
level group

DeletePortalGroup PORTALGROUPKEY C

GetPortalGroups PORTALGROUPKEYS R Returns a list of
portal groups

PORTALGROUPKEY C

NAME R

DESCRIPTION R

PORTALKEYS R List of reader keys

UNLOCKTIMESPECGROUPKE
Y C

Timespec group key
for unlocking portals
in this group

GetPortalGroup

THREATLEVELGROUPKEY C Reference to threat
level group

Access Levels in EditPerson
A Person record may have up to thirty two (32) access levels associated with it. The syntax below
describes the access levels associated with a Person:

<ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 .
 .
 .
 <ACCESSLEVEL>access level 32</ACCESSLEVEL>
</ACCESSLEVELS>

Any access levels passed with the EditPerson API command replace all access levels in the Person
record. That is, access levels must be passed as a group. It is not necessary, however, to pass
empty access levels; any access levels not provided in an EditPerson command will be cleared by
the API.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

28

Date Formats
There are different rules for supplying dates as input, and the dates that are retrieved. All dates are
in local time as of the time of the NetBox server.

Activation Date and Expiration Date Formats in EditPerson
The activation date (ACTDATE) and expiration date (EXPDATE), if provided, must be in the form:

YYYY-MM-DD HH:MM or YYYY-MM-DD

where the time is defaulted to 00:00 in the second case.

Returned Dates
Returned dates are shown in 2 forms. If the command does not have the ‘dateformat=”tzoffset”’
attribute, the dates are returned as:

YYYY-MM-DD HH:MM:SS

If ‘dateformat=”tzoffset”’ is supplied as an attribute to the command, then thereturned value is in the
format:

YYYY-MM-DD HH:MM:SS +/-HHMM

Where, for example, EST timezone would be “-0500” (indicating -5 hours and 0 minutes offset from
GMT).

Using the ENCODEDNUM, HOTSTAMP, CARDID and CARDNUM
Parameters in AddCredential
Callers have the option of supplying an ENCODEDNUM, HOTSTAMP, CARDID or CARDNUM with
the AddCredential and RemoveCredential calls. CARDID is simply a synonym for HOTSTAMP and
will not be discussed further. CARDNUM represents the internal bit representation of a card as
stored in the database, and its use is deprecated, although it will be described below.

ENCODEDNUM and HOTSTAMP correspond to the fields that show up in the NetBOX UI. They
often appear as the same values. However, their meaning is quite different. The ENCODEDNUM
that shows up in the UI (and here in the NBAPI) is an integer that is inserted into the card according
to the bit representation of the card format.

For example, the standard Wiegand26 format that comes with the NetBox displays the following in
the NB UI:

-FFFFFFF FNNNNNNN NNNNNNNN N-

The “-“ represent bits that are ignored, the “FFFF” represents the facility code, and the “NNNN”
represent bits where the ENCODEDNUM is stored.

HOTSTAMP, while it defaults to the same value as ENCODEDNUM, is often a number that appears
on the credential itself as an externally visible integer and may be quite different than the
ENCODEDNUM.

In the NBAPI, either will be used for both if only one is supplied.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

29

The CARDNUM Parameter and Card Format in AddCredential
As stated before, use of the CARDNUM parameter is now deprecated.

The CARDNUM parameter is the data stream that is encoded on the credential. In the database, it
is a 128-bit value stored in the form it takes as it is read from the credential. That means that it is the
complete data stream as it appears in the credential, and padded with zeroes to the right. The
CARDNUM value passed to the API includes enough zero bits (padded to the right) to make
complete bytes. That value is passed as the ASCII equivalent12 of the hexadecimal data that form
those bytes. The API will further pad to the right with zeroes until the full 128 bits is reached.

By way of example, consider the following 26 bits as read off a typical Wiegand card and then
padded to the right with zeroes to make an integral number of bytes:

00000101 11000001 11011111 10 00000101 110000001 11011111 10000000

This value is equivalent to 0x05C1DF80 (hex) or “05C1DF80” in ASCII. Note that this 8-character
string represents 32 bits. Zeroes are added to the right to make 128 bits, resulting in the value
“05C1DF80000000000000000000000000”. The caller could have, of course, simply passed this
fully padded value and obtained the same result.

The raw data read from a credential in real time by the S2 NetBox is interpreted using a set of rules
defined by the card format. Card formats are defined in the S2 NetBox user interface with the
SETUP > ACCESS CONTROL > CARD FORMATS command and a list of the card format names
can be retrieved in the API using the GetCardFormats command.

The response to the GetCardFormats API command is similar to:

<NETBOX>
 <RESPONSE command="GetCardFormats" num="1">
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <CARDFORMATS>
 <CARDFORMAT>Wiegand26</CARDFORMAT>
 <CARDFORMAT>ISO34bit</CARDFORMAT>
 </CARDFORMATS>
 </DETAILS>
 </RESPONSE>
</NETBOX>

12 Only upper case characters may appear in the ASCII-equivalent representation of the hexadecimal
data.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

30

Response to GetPerson
When the GetPerson command returns a <CODE> of “SUCCESS”, then <DETAILS> contains a block
of XML with data about the Person. The entire response appears as:

<NETBOX>
 <RESPONSE command=”GetPerson” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>ID of Person record</PERSONID>
 <FIRSTNAME>Person’s first name</FIRSTNAME>
 <LASTNAME>Person’s last name</LASTNAME>
 <UDF1>User Defined Field</UDF1>
 <UDF2>User Defined Field</UDF1>
 …
 <UDF20>User Defined Field</UDF20>
 <PICTUREURL>Filename for picture data</PICTUREURL>
 <DELETED>TRUE/FALSE</DELETED>
 <ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 .
 .
 .
 <ACCESSLEVEL>access level 32</ACCESSLEVEL>
 </ACCESSLEVELS>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Note that only the access levels currently assigned are returned, and if there are none assigned,
then none are returned. Also note that the picture data file (returned as text between the
PICTUREURL tags) is stored in the directory “/usr/local/s2/web/upload/pics” on the controller.

Calling SearchPersonData
When calling SearchPersonData, there are various options in making the call. If <PERSONID> is
supplied in the call, then exactly one matching person is returned. In the other cases, the call
retrieves the matching people.

In the boundary case, with no parameters supplied, all people on the NetBox are returned. If there
are more people than can be returned in a single response, a <NEXTKEY> element is returned that
allows the next call to be made. In this way, iterative calls can retrieve as many people as required,
by keeping all the other parameters the same, and supplying a new <NEXTKEY> element for each
successive call.

An example of a call to retrieve a single person is:

<NETBOX-API>
 <COMMAND name=”SearchPersonData” num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <PERSONID>_3</PERSONID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

31

</NETBOX-API>

An example of a (second) call to retrieve multiple people with restrictions, after the first response
returned a <NEXTKEY> parameter is:

<NETBOX-API>
 <COMMAND name=”SearchPersonData” num=”1”>
 <PARAMS>
 <LASTNAME>Smith</LASTNAME>
 <STARTFROMKEY>32</STARTFROMKEY>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Response to SearchPersonData
When the SearchPersonData command returns a <CODE> of “SUCCESS”, then <DETAILS>
contains a block of XML with data about one or more people. The entire response appears as:

<NETBOX>
 <RESPONSE command=”SearchPersonData” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PEOPLE>
 <PERSON>
 <PERSONID>ID of Person record</PERSONID>
 <FIRSTNAME>Person’s first name</FIRSTNAME>
 <LASTNAME>Person’s last name</LASTNAME>
 <UDF1>User Defined Field</UDF1>
 <UDF2>User Defined Field</UDF1>
 …
 <UDF20>User Defined Field</UDF20>
 <PICTUREURL>Filename for picture data</PICTUREURL>
 <DELETED>TRUE/FALSE</DELETED>
 …
 <ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 …
 </ACCESSLEVELS>
 <ACCESSCARDS>
 <ACCESSCARD>
 <ENCODEDNUM>encoded #</ENCODEDNUM>
 <HOTSTAMP>hot stamp #</HOTSTAMP>
 <CARDFORMAT>name of card format</CARDFORMAT>
 <DISABLED>1 or 0</DISABLED>
 </ACCESSCARD>
 <ACCESSCARD>
 …
 </ACCESSCARD>
 </ACCESSCARDS>
 </PERSON>
 <PERSON>
 …

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

32

 </PERSON>
 </PEOPLE>
 <NEXTKEY>internal key to pass into next request</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

The breakdown of information is as follows. As many people are returned as possible that match the
query. If there is insufficient space in the internal buffer, <NEXTKEY> is returned as the parameter to
use to retrieve the next set of people.

For each person, the list of access levels and access cards associated with that person are returned.
If there are no access levels, none are returned. For the access cards, the newer <ENCODEDNUM>
and <HOTSTAMP> attributes are returned (see AddCredential) in place of <CARDID> and
<CARDNUM>.

Note that the picture data file (returned as text between the PICTUREURL tags) is stored in the
directory “/usr/local/s2/web/upload/pics” on the controller.

Response to GetAccessLevels
When the GetAccessLevels command returns a <CODE> of “SUCCESS” then <DETAILS> contains
a list of access level names currently defined in the system. The entire return would appears as
follows:

<NETBOX>
 <RESPONSE command=”GetAccessLevels” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <ACCESSLEVELS>
 <ACCESSLEVEL>access level 1</ACCESSLEVEL>
 <ACCESSLEVEL>access level 2</ACCESSLEVEL>
 .
 .
 .
 <ACCESSLEVEL>access level 256</ACCESSLEVEL>
 </ACCESSLEVELS>
 <NEXTNAME>access level 257</NEXTNAME>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Note that only the access levels currently assigned are returned, and if there are none assigned,
then none are returned.

If there is insufficient space in the internal buffer, either <NEXTNAME> or <NEXTKEY> (if
WANTKEY=TRUE) is returned as the parameter to use to retrieve the next set of people.

Otherwise, </NEXTNAME>, or <NEXTKEY> with a value of “-1”, are returned, respectively.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

33____

Response to the GetCardAccessDetails and GetAccessCardDetails
Command
(GetAccessCardDetails is deprecated: use GetCardAccessDetails instead.)

The GetCardAccessDetails and GetAccessCardDetails API commands are used to return recent
access events associated with a given credential as defined by that credential’s CARDID and
CARDFORMAT parameters. A typical call looks like:

<NETBOX-API>
 <COMMAND name="GetCardAccessDetails" num="1">
 <PARAMS>
 <ENCODEDNUM>3527</ENCODEDNUM>
 <CARDFORMAT>Code30</CARDFORMAT>
 <MAXRECORDS>3</MAXRECORDS>
 </PARAMS>
 </COMMAND>
</NETBOX-API>

In this example, the most recent 3 access events are requested for a credential with ENCODEDNUM
3527and a CARDFORMAT called “Code30.” If the request succeeds (<CODE>SUCCESS</CODE>)
then the following are returned:

• PERSONID – the external person ID associated with the person who owns the credential
specified credential. This is the field in the person record labeled “ID #”.

• DISABLED – 1 if the credential is currently marked disabled, and 0 otherwise.

• DTTM – The controller date and time associated with the first access data log that exists for the
stated credential on the day the request is made to the API.

• PORTALNAME – Name of the portal associated with the first access of the calendar day referred
to by the DTTM value.

• ACCESSES – a list of access data log records responsive to the request. Each data log returned
is enclosed within <ACCESS>…</ACCESS> tags, and may include the following fields:

o DTTM – The controller date and time associated with the data log.
o NODEDTTM - The node date and time associated with the data log.
o TYPE – Valid or invalid access. See the table on page 35 for details on the type codes

that can be returned.
o PORTALNAME – name of the portal associated with the access.
o PORTALKEY – unique identifier for the portal that matches to the GetPortals query.
o READERKEY – unique identifier for the reader that had the access
o REASON – Reason code associated with a rejected access attempt. See the table on

page 35 for details.

A sample might look like:

<NETBOX>
 <RESPONSE command="GetCardAccessDetails" num="1">
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>44886</PERSONID>
 <DISABLED>0</DISABLED>
 <ACCESSES>
 <ACCESS>
 <DTTM>2005-11-09 15:07:03</DTTM>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

34

 <TYPE>1</TYPE>
 <PORTALNAME>Front Door</PORTALNAME>
 <PORTALKEY>30</PORTALKEY>
 <READERKEY>3</READERKEY>
 <LOGID>523</LOGID>
 <REASON></REASON>
 </ACCESS>
 <ACCESS>
 <DTTM>2005-11-09 11:38:15</DTTM>
 <TYPE>1</TYPE>
 <PORTALNAME>Garage</PORTALNAME>
 <PORTALKEY>41</PORTALKEY>
 <READERKEY>4</READERKEY>
 <LOGID>521</LOGID>
 <REASON></REASON>
 </ACCESS>
 <ACCESS>
 <DTTM>2005-09-15 10:02:57</DTTM>
 <TYPE>1</TYPE>
 <PORTALNAME>Main Gate</PORTALNAME>
 <PORTALKEY>23</PORTALKEY>
 <READERKEY>5</READERKEY>
 <LOGID>479</LOGID>
 <REASON></REASON>
 </ACCESS>
 </ACCESSES>
 <DTTM>2005-11-09 11:38:15</DTTM>
 <PORTALNAME>Garage</PORTALNAME>
 <PORTALKEY>41</PORTALKEY>
 <READERKEY>4</ READERKEY>
 <NEXTLOGID>450</NEXTLOGID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Response to the GetAccessDataLog Command
Responses to the GetAccessDataLog command indicate the details of card access attempts, and
have the form:

<NETBOX>
 <RESPONSE command=”GetAccessDataLog” num=command-number>
 <CODE>SUCCESS|FAIL|NOT FOUND</CODE>
 <DETAILS>
 <LOGID>logid</LOGID>
 <PERSONID>ID of Person record</PERSONID>
 <READER>name of reader</READER>
 <READERKEY>unique identifier for reader</READERKEY>
 <DTTM>date, time e.g 2005-01-03 23:57:21</DTTM>
 <TYPE>1=access granted, 2=access denied</TYPE>
 <REASON>reason code from table below</REASON>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

35

Type Code and Reason Code tables
The GetCardAccessDetails, GetAccessCardDetails, and GetAccessDataLog commands return type
codes and reason codes. These tables describe what these can be. For valid accesses, no reason
code is returned:

Type code Description

1 Valid access (no reason code supplied)

2 Invalid access

37 Elevator valid access (no reason code supplied)

38 Elevator invalid access

64 Access not completed

Reason codes are provided only for invalid access attempts, and are described in the table below:

Reason
code Description

1 Card not in local database

2 Card not in S2NC database

3 Wrong time

4 Wrong location

5 Card misread

6 Tailgate violation

7 Anti-passback violation

8 --unused--

9 Wrong day

10 – 13 --unused--

14 Card expired

15 Card bit length mismatch

16 Wrong Day

17 Threat Level (prevented access)

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

36

By way of example, a call such as:

<NETBOX-API>
 <COMMAND name=”GetAccessDataLog” num=”1”>
 <PARAMS>
 <LOGID>999</LOGID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

might return a result such as:

<NETBOX>
 <RESPONSE command=”GetAccessDataLog” num=”1”>
 <CODE>999</CODE>
 <DETAILS>
 <PERSONID>1000</PERSONID>
 <READER>Garage-in</READER>
 <READERKEY>5</READERKEY>
 <DTTM>2005-01-03 23:57:21</DTTM>
 <TYPE>2</TYPE>
 <REASON>4</REASON>
 </DETAILS>
 </RESPONSE>
</NETBOX>

In this case, an invalid access attempt at 23:57:21 on January 3, 2005 occurred at the “Garage-in”
reader by the Person whose ID is 1000. The reason for rejection was that the card was used at the
wrong location.

Calling EditThreatLevelGroup
EditThreatLevelGroup is called to add (if the group does not exist) or edit (if it does) a threat level
group. A call might appear like:

<NETBOX-API>
 <COMMAND name=”EditThreatLevelGroup” num=”1”>
 <PARAMS>
 <LEVELGROUPNAME>Hot</LEVELGROUPNAME>
 <LEVELNAMES>
 <LEVELNAME>RedLevel</LEVELNAME>
 <LEVELNAME>OrangeLevel</LEVELNAME>
 </LEVELNAMES>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Note that the names in the <LEVELNAMES> are names of individual levels that must already exist in
the system.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

37

Calling GetPortals
An example of calling GetPortals successively if <NEXTKEY> was returned on a previous call is:

<NETBOX-API>
 <COMMAND name=”GetPortals” num=”1”>
 <PARAMS>
 <STARTFROMKEY>32</STARTFROMKEY>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Response to the GetPortals
Responses to the GetPortals command list the portals and their associated card readers:

<NETBOX>
 <RESPONSE command=”GetPortals” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PORTALS>
 <PORTAL>
 <NAME>name of portal</NAME>
 <PORTALKEY>unique id for portal</PORTALKEY>
 <READERS>
 <READER>
 <READERKEY>unique id for reader</READERKEY>
 <NAME>name of reader</NAME>
 <PORTALORDER>1 or 2</PORTALORDER>
 </READER>
 <READER>
 …
 </READER>
 </READERS>
 </PORTAL>
 <PORTAL>
 …
 </PORTAL>
 </PORTALS>
 <NEXTKEY>key of next portal</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

The <PORTALORDER> element of a READER indicates whether it is in the first or the second
reader position in a Portal. While this is not guaranteed, the first position is always used as the
incoming reader; the second position is optional, and is used as the outgoing reader in a dual reader
door when it exists.

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

38

Calls and Responses to GetAccessHistory
GetAccessHistory serves multiple purposes:

• to retrieve at any one point in time a history of accesses that are available on the NetBox;

• over time to retrieve any new accesses that may have occurred.

• To retrieve a longer history of accesses for a particular card.

• ACCESSES – a list of access data log records responsive to the request. Each data log returned
is enclosed within <ACCESS>…</ACCESS> tags, and may include the following fields:

o DTTM – The controller date and time associated with the data log.
o TYPE – Valid or invalid access. See the table on page 35 for details on the type codes

that can be returned.
o PORTALKEY – unique identifier for the portal that matches to the GetPortals query.
o READERKEY – unique identifier for the reader that had the access

These three examples are illustrated below.

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

This will return the most recent access history records, in reverse time order, up to some internal
maximum, for example:

<NETBOX>
 <RESPONSE command=” GetAccessHistory” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <ACCESSES>
 <ACCESS>
 <LOGID>402</LOGID>
 <PERSONID>uid45</PERSONID>
 <READER>reader 1</READER>
 <DTTM>2006-06-23 10:31:06 -0400</DTTM>
 <TYPE>1</TYPE>
 <READERKEY>3</READERKEY>
 <PORTALKEY>30</PORTALKEY>
 </ACCESS>
 <ACCESS>
 <LOGID>397</LOGID>
 <PERSONID>uid23</PERSONID>
 <READER>reader 2</READER>
 <DTTM>2006-06-23 10:15:06 -0400</DTTM>
 <TYPE>1</TYPE>
 <READERKEY>5</READERKEY>
 <PORTALKEY>15</PORTALKEY>
 </ACCESS>
 …
 </ACCESSES>
 <NEXTLOGID>310</NEXTLOGID>
 </DETAILS>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

39

 </RESPONSE>
</NETBOX>

A subsequent call using the <NEXTLOGID> value will retrieve the next older chunk of log records,
e.g.:

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <STARTLOGID>310</STARTLOGID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Another call later using <AFTERLOGID> will retrieve any records which have been created since the
first call, e.g.:

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <AFTERLOGID>402</AFTERLOGID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

These would be returned in ascending order, going forwards, e.g.:

<NETBOX>
 <RESPONSE command=” GetAccessHistory” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <ACCESSES>
 <ACCESS>
 <LOGID>405</LOGID>
 <PERSONID>uid4</PERSONID>
 <READER>reader 2</READER>
 <DTTM>2006-06-23 10:31:06 -0400</DTTM>
 <TYPE>1</TYPE>
 <READERKEY>5</READERKEY>
 <PORTALKEY>30</PORTALKEY>
 </ACCESS>
 </ACCESSES>
 <NEXTLOGID>-1</NEXTLOGID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

40

This indicates that only 1 new entry was found. Let’s say after this another call is made, e.g.:

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <AFTERLOGID>405</AFTERLOGID>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

If there are no more, it will return “NOT FOUND”, i.e.:

<NETBOX>
 <RESPONSE command=” GetAccessHistory” num=”1”>
 <CODE>NOT FOUND</CODE>
 </RESPONSE>
</NETBOX>

This next query is for entries matching a particular access card. It is intended as a following call to
the GetCardAccessDetails and GetAccessCardDetails calls.

<NETBOX-API>
 <COMMAND name=”GetAccessHistory” num=”1” dateformat=”tzoffset”>
 <PARAMS>
 <ENCODEDNUM>3527</ENCODEDNUM>
 <CARDFORMAT>Code30</CARDFORMAT>
 <STARTLOGID>310</STARTLOGID>
 <MAXRECORDS>100</MAXRECORDS>
 <OLDESTDTTM>2006-06-22 00:00:01</OLDESTDTTM>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Notes on TimeSpecs and TimeSpecGroups
TimeSpecs and TimeSpecGroups are tightly related. The rest of the S2 system refers to time
schedules using only TimeSpecGroups. A TimeSpecGroup may be constructed out of one or more
TimeSpecs. This is the only use in version 2.5 and later for TimeSpecs.

The S2 system is initialized with 2 TimeSpecs and 2 corresponding TimeSpecGroups: “Always” and
“Never.” The “Always” and “Never” Time Specs are returned in a GetTimeSpecs call, and can be
used in constructing a TimeSpecGroup.

Likewise, the “Always” and “Never” Time Spec Groups are returned in a GetTimeSpecGroups call.

For every TimeSpec that is created, either through the UI or through the NBAPI, a corresponding
TimeSpecGroup is automatically created. This TimeSpecGroup is the “singular” TimeSpecGroup that
only contains the TimeSpec. Likewise, whenever a TimeSpec is modified or deleted, a
corresponding TimeSpecGroup is modified or deleted.

As with the system-initialized TimeSpecGroups, the “singular” TimeSpecGroups constructed by
adding a new TimeSpec are returned in a call to “GetTimeSpecGroups.”

While you can construct a new TimeSpecGroup out of any combination of existing TimeSpecs, you
cannot modify or delete any of the “singular” TimeSpecGroups that either existed at system

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

41

initialization time, or were created by adding new Time Specs. Nor can you modify or delete the
“Always” and “Never” Time Specs that exist at system initialization time.

Calling GetTimeSpec
This works by supplying a TimeSpec Key. This will typically come from the list of Time Spec Keys in
a Time Spec Group.

<NETBOX-API>
 <COMMAND name=”GetTimeSpec” num=”1”>
 <PARAMS>
 <TIMESPECKEY>3</TIMESPECKEY>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Response to GetTimeSpec
Response to the GetTimeSpec command:

<NETBOX>
 <RESPONSE command=”GetTimeSpec” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPEC>
 <TIMESPECKEY>unique id for timespec</TIMESPECKEY>
 <NAME>name of timespec</NAME>
 <DESCRIPTION>description for timespec</DESCRIPTION>
 <MONDAY>TRUE</MONDAY>
 <TUESDAY>TRUE</TUESDAY>
 …
 <STARTTIME>HH:MM</STARTTIME>
 <ENDTIME>HH:MM</ENDTIME>
 <HOLIDAYGROUPS>1,2,3</HOLIDAYGROUPS>
 </TIMESPEC>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

42

Calling GetTimeSpecs
This works identically to GetPortals, in that a “STARTFROMKEY” can be passed in to return the next
set of Time Specs, if more than one call needs to be made.

Response to GetTimeSpecs
Responses to the GetTimeSpecs command list time specs

<NETBOX>
 <RESPONSE command=”GetTimeSpecs” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPECS>
 <TIMESPEC>
 <TIMESPECKEY>unique id for timespec</TIMESPECKEY>
 <NAME>name of timespec</NAME>
 <DESCRIPTION>description for timespec</DESCRIPTION>
 <MONDAY>TRUE</MONDAY>
 <TUESDAY>TRUE</TUESDAY>
 …
 <STARTTIME>HH:MM</STARTTIME>
 <ENDTIME>HH:MM</ENDTIME>
 <HOLIDAYGROUPS>1,2,3</HOLIDAYGROUPS>
 </TIMESPEC>
 <TIMESPEC>
 …
 </TIMESPEC>
 </TIMESPECS>
 <NEXTKEY>key of next timespec</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Calling GetTimeSpecGroup
As with GetTimeSpec, this specifies a key that might be retrieved from another part of the system.

<NETBOX-API>
 <COMMAND name=”GetTimeSpecGroup” num=”1”>
 <PARAMS>
 <TIMESPECGROUPKEY>4</TIMESPECGROUPKEY>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

43

Response to GetTimeSpecGroup
Responses to the GetTimeSpecGroup command:

<NETBOX>
 <RESPONSE command=”GetTimeSpecGroups” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPECGROUP>
 <TIMESPECGROUPKEY>unique id for group</TIMESPECGROUPKEY>
 <NAME>name of timespec</NAME>
 <DESCRIPTION>description for group</DESCRIPTION>
 <TIMESPECKEYS>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 …
 </TIMESPECKEYS>
 </TIMESPECGROUP>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Calling GetTimeSpecGroups
This also works identically to GetPortals, in that a “STARTFROMKEY” can be passed in to return the
next set of Time Spec Groups, if more than one call needs to be made.

Response to GetTimeSpecGroups
Responses to the GetTimeSpecGroups command list time specs

<NETBOX>
 <RESPONSE command=”GetTimeSpecGroups” num=command-number>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <TIMESPECGROUPS>
 <TIMESPECGROUP>
 <TIMESPECGROUPKEY>unique id for group</TIMESPECGROUPKEY>
 <NAME>name of timespec</NAME>
 <DESCRIPTION>description for group</DESCRIPTION>
 <TIMESPECKEYS>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 <TIMESPECKEY>ID for timespec</TIMESPECKEY>
 …
 </TIMESPECKEYS>
 </TIMESPECGROUP>
 <TIMESPECGROUP>
 …
 </TIMESPECGROUP>
 </TIMESPECGROUPS>
 <NEXTKEY>key of next group</NEXTKEY>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

44

Errors in API Processing
Errors in processing of specific, well formed API commands are explained above. Errors which
prevent the processing of commands return a special XML blob:

<NETBOX>
 <RESPONSE>
 <APIERROR>apiErrorCode</APIERROR>
 </RESPONSE>
</NETBOX>

Where apiErrorCode is defined as in the table below:

apiError Code Description

API_INIT_FAIL 1 Database error (database not running, etc.)

API_DISABLED 2 The API processor is not activated for this S2 NetBox

API_NOCOMMAND 3 No APIcommand parameter was passed to the API processor

API_PARSE_ERROR 4 The APIcommand data could not be parsed by the XML parser

API_AUTH_FAILURE 5 API authorization failure (if authorization enabled in the user
interface)

API_UNKNOWN_COMMAND 6 The API processor did not recognize the command passed in
the APIcommand parameter.

Message Authentication Code
The message authentication code (MAC) is a code based on the SHA-1 hashing algorithm that is
designed to be unique for every message and impossible to reverse in practice. The MAC is
transmitted in the <MAC> tag of the message and has the form:

RAN1
(1-5)

RAN2
(6-10)

SEQ #
(11-20)

 SHA-1 result as 40 hexadecimal
 digits (21-60)

where RAN1 and RAN2 are two random numbers, each of five decimal digits; SEQ # is the zero-
padded 10-digit sequence number that is incremented for each message transmitted by the caller;
and, the balance is the 40-hex digit SHA-1 hash as produced by the algorithm provided.

Generating the MAC
Code in C is provided by S2 and other organizations to calculate the SHA-1 digest used in the MAC.
S2 also provides a utility function, generate_mac, to create the MAC from caller-provided inputs as
follows:

#define SHA_SECRET_SZ 8 //the secret is 8 bytes long

// generate_mac:
// takes the msg, seq and secret and generates a SHA_MAC_LEN + 1
// byte mac (null terminated) which is then stored in mac
// and a pointer to mac is returned

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

45

//
// NOTES:
//
// 1. msg must be null terminated and should not contain the
// <MAC>...</MAC> tags.
//
// 2. secret must be null terminated and < SHA_SECRET_SZ bytes long
//
unsigned char *generate_mac(unsigned char *msg, unsigned long seq,
unsigned char *secret, unsigned short rand1, unsigned short rand2,
unsigned char *mac);

Examples
For example, the XML generated to add a person might appear as follows:

<NETBOX-API>
 <COMMAND name=”EditPerson” num=”1”>
 <PARAMS>
 <LASTNAME>Doe</LASTNAME>
 <FIRSTNAME>John</FIRSTNAME>
 <ACCESSLEVELS>
 <ACCESSLEVEL>GeneralAccess</ACCESSLEVEL>
 <ACCESSLEVEL>ParkingAccess</ACCESSLEVEL>
 </ACCESSLEVELS>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

The command would return information such as:

<NETBOX>
 <RESPONSE command=”EditPerson” num=”1”>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>_123</PERSONID>
 </DETAILS>
 </RESPONSE>
</NETBOX>

If an error had occurred, then the ERRMSG tag would give a text description of the error condition as
in:

<NETBOX>
 <RESPONSE command=”EditPerson” num=”1”>
 <CODE>FAIL</CODE>
 <DETAILS>
 <ERRMSG>
 Access level does not exist “ParkingAccess”
 </ERRMSG>
 </DETAILS>
 </RESPONSE>
</NETBOX>

Version 3.1d, July 25, 2008
© 2008 S2 Security Corporation All Rights Reserved S2 Security Corporation Confidential

46

Once the person record has been instantiated, a credential (card) can be added to it as follows:

<NETBOX-API>
 <COMMAND name=”AddCredential” num=”1”>
 <PARAMS>
 <PERSONID>_123</PERSONID>
 <CARDNUM>AF2621B5</CARDNUM>
 <CARDFORMAT>Wiegand26</CARDFORMAT>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Because multiple commands can be included in a single XML call, the creation of a Person and
association of credentials can be accomplished in one transaction (if the caller provides the
PERSONID):

<NETBOX-API>
 <COMMAND name=”EditPerson” num=”1”>
 <PARAMS>
 <LASTNAME>Doe</LASTNAME>
 <FIRSTNAME>John</FIRSTNAME>
 <ACCESSLEVELS>
 <ACCESSLEVEL>GeneralAccess</ACCESSLEVEL>
 <ACCESSLEVEL>ParkingAccess</ACCESSLEVEL>
 </ACCESSLEVELS>
 <PERSONID>X1000</PERSONID>
 </PARAMS>
 </COMMAND>
 <COMMAND name=”AddCredential” num=”2”>
 <PARAMS>
 <PERSONID>X1000</PERSONID>
 <CARDNUM>AF2621B5</CARDNUM>
 <CARDFORMAT>Wiegand26</CARDFORMAT>
 </PARAMS>
 </COMMAND>
 <MAC> …authentication code… </MAC>
</NETBOX-API>

Assuming that the commands above were successfully executed by the S2 NetBox, the response
would be as follows:

<NETBOX>
 <RESPONSE command=”EditPerson” num=”1”>
 <CODE>SUCCESS</CODE>
 <DETAILS>
 <PERSONID>X1000</PERSONID>
 </DETAILS>
 </RESPONSE>
 <RESPONSE command=”AddCredential” num=”2”>
 <CODE>SUCCESS</CODE>
 </RESPONSE>
</NETBOX>

